1 ,I ,I -Trichloro-2,2,2-trimethyldisilane: Reagent for Stereospecific Silylation of z-Allylpalladium Complexes

Tamio Hayashi,* Akihiro Yamamoto, Takao Iwata, and Yoshihiko Ito*

Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606, Japan

Reaction of optically active π-allylpalladium complexes with Cl₃SiSiMe₃ or Cl₂PhSiSiMe₃ in the presence of **triphenylphosphine was found to proceed with retention of configuration to give optically active allylsilanes in high yields.**

We have previously reported that optically active π -allylpal $ladium(II)$ complexes can be prepared by the reaction of optically active allylsilanes with palladium (n) and the chirality transfer proceeds stereospecifically with inversion of configuration.1 Here we describe that its reverse reactions, *i.e.,* stereospecific silylation of π -allylpalladium(n) complexes, is achieved by making use of the disilanes $Cl₃Si\dot{S}$ iMe₃ or $Cl₂PhSiSiMe₃$ as silylating reagents.²

Several disilanes and silyl-metal reagents were examined for their reactivity and stereoselectivity in the silylation of the optically active π -allylpalladium(π) complex, $(+)$ - $(1R, 2S, 3S)$ di-p-chloro-bis(**1-methyl-3-phenyl-n-ally1)dipalladium** (1) ${(\alpha]_D}^{20}$ +596° (chloroform), 84% enantiomeric excess (e.e.)}l (Scheme **1);** 1,l **,l-trichloro-2,2,2-trimethyldisilane3 (2a)** was found to be the best silylating reagent. Thus, **(2a)** (1.8 mmol) was added to a solution of the π -allylpalladium **(1)** (1.2) mmol) and triphenylphosphine (6.0 mmol) in tetrahydrofuran (THF) (12 ml). The mixture was stirred at 0° C for 0.5 h and treated with ethanol and triethylamine to give in 80% yield the optically active allylsilane, **(E)-l-phenyl-3-triethoxysilylbut-l**ene **(3a)** $\{[\alpha]_D^{20} + 11.7^\circ$ (c 2.0, benzene)} as a single product. Formation of its regioisomer **(4a)** or trimethylsilyl analogues was not observed. The allylsilane **(3a)** was determined to be the *(R)* isomer of 79% e.e. by conversion into the known (R) -allyl alcohol $(5)^4$ by oxidation with *m*-chloroperbenzoic acid (MCPBA) and KHF_2 in dimethylformamide (DMF), a reaction which has been established to proceed with retention of configuration5 (Scheme *2).* It follows that the trichlorosilyl group attacked the π -allyl carbon atom from the same side as the palladium,[†] most probably *via* a π -allyl(trichlorosilyl)pal-

Scheme 1. *Reagents:* **i**, $CI_3SiSiMe₃$ **(2a)**, $CI_2PhSiSiMe₃$ **(2b)**, or C12MeSiSiMe3 **(2c)** (1.5 equiv.), PPh, *(5* equiv.), THF, then EtOH and Et₃N; ii, Ph₃SiLi or Ph₃SiAlEt₂, PPh₃ (5 equiv.), THF, 25 °C.

t Similar stereochemistry has been reported in the palladiumcatalysed silylation of an ally1 acetate though the selectivity is not always high.2b

ladium intermediate. The configuration *(R)* of **(3a)** was confirmed by palladation (inversion of configuration)¹ with $dichlorobis(acentoritile)$ palladium (n) in methanol which gave $(-)$ -(1S,2R,3R)-(1) $\{ [\alpha]_D^{20} - 546^\circ \}$ (chloroform), 77% e.e.) in quantitative yield. The inversion of the π -allyl group in x-allylpalladium complexes can take place in two steps (silylation and palladation).

Of other disilanes, $CI₂PhSiSiMe₃$ ⁶ (2b) was the most reactive to give $(0 \degree C, 40 \text{ h})$ a 96% yield of a mixture of the allylsilanes **(3b)** and **(4b)** in **a** ratio of *5:* 1. At higher temperature (40 "C), C12MeSiSiMe3 **(2c)** gave a **54%** yield of allylsilanes $[(3c) : (4c) 6:1]$, but only a trace $(<5\%$ yield) of silylation products was formed with $CIME_2SiSiMe_3$, Me₃Si- $SiMe₃$, ClMe₂SiSiMe₂Cl, and Cl₂MeSiSiMe₂Cl. \ddagger It seems that

Scheme 2. *Reagents:* i, MCPBA (1.1 equiv.), KHF, (20 equiv.), DMF, 24 h at room temp., 66% yield; ii, PdCl₂(MeCN)₂ (1.2 equiv.), MeOH, **14** h at room temp., 98% yield.

Scheme 3. *Reagents:* i, (2b), PPh₃ (5 equiv.), THF, 1 h at 0 °C, then MeMgBr-Et₂O (6 equiv.), 72% yield; ii, PdCl₂(MeCN)₂ (1.3 equiv.), MeOH, 53% yield.

Scheme 4. *Reagents:* **i**, for (8a,b), (2b), PPh₃ (5 equiv.), THF, 0 °C; for **(8c), (2a), 1,2-bis(diphenylphosphino)ethane** (1 equiv.), THF, 0 "C; for **(8d,e), (2a),** PPh3 **(5** equiv.), THF, 20 "C; ii, EtOH, Et,N.

^{\$} Although an 80% yield of silylation product **(3a)** was obtained with $Cl₃SiSiCl₃$, it turned out that this disilane is effective only for the silylation of (1) . Its reaction with other π -allylpalladium complexes such as **(8b-e)** failed to give any silylation products.

the unsymmetrical disilanes are more reactive than symmetrical ones and polarization of the silicon-silicon bond facilitates transfer of the silyl group from silicon to palladium. Use of triphenylsilyl-lithium $(Ph₃SiLi)⁷$ and the silyl-aluminium reagent Ph₃SiAlEt₂⁸ for the reaction with **(1)** resulted in low yields (45 and 35%, respectively) of the triphenyl(ally1)silane **(3d)9** with low stereoselectivity **(14** and 57% e.e., respectively).

The retention of stereochemistry in the silylation was also demonstrated in the reaction of the optically active π -allylpalladium complex $(6)^9$ (Scheme 3). Treatment of $(+)$ - (6) $\{[\alpha]_D^{20}$ +20.3° (chloroform)) with (2b) in the presence of triphenylphosphine at 0° C for 1 h followed by methylation with MeMgBr gave a 72% yield of the (R) -phenyldimethylsilane **(7)** whose configuration was determined by palladation to give $(-)$ -(6) $\{[\alpha]_D^{20} -17.8^\circ \text{ (chloroform)}\}\.$ High reactivity of the disilanes **(2a)** or **(2b)** was also observed in reactions with several π-allylpalladium complexes (8a-e) (Scheme 4). Silylation took place at the less substituted π -allyl carbon atom to give the corresponding (E)-allylsilanes **(9)** in high yields.

We thank the Yamada Science Foundation for partial financial support of this work and Shin-etsu Chemical Industry Co., Ltd. for a gift of chlorosilanes.

Received, *5th* November *1986; Corn. 1579*

References

- 1 T. Hayashi, M. Konishi, and M. Kumada, J. Chem. Soc., Chem. *Commun.,* **1983,736.**
- **2** Palladium-catalysed silylation of ally1 acetates or chlorides with disilanes, $(Cl_nMe_{3-n}Si)_2$ $(n = 0-2)$ or $(Me_3Si)_3Al$ has been reported, which is considered to include silylation of a π -allylpalladium intermediate in a catalytic cycle: (a) H. Matsumoto, T. Yako, S. Nagashima, T. Motegi, and *Y.* Nagai, J. *Organornet. Chem.,* **1978,148,97;** (b) B. M. Trost, J. Yoshida, and M. Lautens, J. *Am. Chem. Soc.,* **1983, 105, 4494;** (c) H. Urata, H. Suzuki, Y. Moro-oka, and T. Ikawa, *Bull. Chem.* **SOC.** *Jpn.,* **1984,57,607.**
- **3** K. Tamao and M. Kumada, J. *Organomet. Chem.,* **1971,30,339. 4** T. Hayashi, **Y.** Okamoto, K. Kabeta, T. Hagihara, and M. Kumada, J. *Org. Chem.,* **1984,49,4224.**
- 5 K. Tamao, T. Kakui, M. Akita, T. Iwahara, R. Kanatani, J. Yoshida, and M. Kumada, *Tetrahedron,* **1983,39,983;** K. Tamao, N. Ishida, T. Tanaka, and M. Kumada, *Organometallics,* **1983,** *2,* **1694.**
- **6** E. Hengge, G. Bauer, E. Brandstaetter, and G. Kollmann, *Monatsh. Chem.,* **1975, 106, 887.**
- **7** M. **V.** George, D. J. Peterson, andH. Gilman, J. *Am. Chem.* **SOC., 1960,** *82,* **403.**
- 8 Prepared by mixing Ph₃SiLi and ClAlEt₂: see H. Hayami, M. Sato, S. Kanemoto, Y. Morizawa, K. Oshima, and H. Nozaki, *J. Am. Chem. Soc.,* **1983, 105,4491.**
- **9** T. Hayashi, M. Konishi, Y. Okamoto, K. Kabeta, and M. Kumada, J. *Org. Chem.,* **1986, 51,3772.**